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We study the following problem. Given a domain 0 containing infinity, is it
possible to choose a sequence of polynomials Qn , n=1, 2, ..., where Qn has degree
n, so that the following condition holds: if a function f is analytic in 0 and Pn is
the polynomial part of the Laurent expansion of Qn f at infinity, then Pn�Qn con-
verges to f, as n tends to infinity, uniformly on bounded closed subsets of 0? We
get a complete solution of this problem when 0 is regular for Dirichlet's problem.
For irregular domains we obtain some results having independent interest but a
main problem remains open: is it possible to find such polynomials Qn for some
irregular domains 0? � 1997 Academic Press

1. INTRODUCTION

Consider the problem of uniform approximation in a domain 0 of an
analytic function f in 0 where the function is given by its Taylor series at
some point z0 # 0. For the sake of convenience we suppose that z0=�.
Then the corresponding Taylor series has the form

f (z)=c0+
c1

z
+

c2

z2+ } } }

and this series converges inside the maximal disk, centered at infinity,
where f is analytic, and diverges outside this disk.

This incomplete form of convergence, which is probably the main disad-
vantage of Taylor series comes from the fact that the partial sums of Taylor
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series are polynomials and they are, in particular, not able to approximate
analytic functions around their poles. To overcome this problem Pade�
approximants (PAs) were introduced. These are rational functions
matching f (z) at infinity with maximal possible degree; for the precise
definition see for instance [1]. PAs are very good for uniform approximation
of some special classes of functions but in general we can not guarantee
convergence anywhere except at the point z=� itself (see [11]). The
cause for such unpredictable behaviour of PAs is mainly a chaotic,
spurious distribution of their poles for large classes of functions.

The difficulties with spurious poles led to the definition of a type of
rational approximants with preassigned poles, known also as Pade� type
approximants (PTAs; see Definition 1). PTAs provide uniform convergence
for analytic functions f in a general class of domains 0 but we need some
special information on 0. The poles of PTAs Pn �Qn are preassigned in the
sense that we may choose the denominator Qn ourselves as any polynomial
of degree n. This gives a great freedom in determining these approximants.
The main problem investigated in this paper is how to choose, for a given
domain 0, polynomials [Qn]�

n=0 providing convergence for any function
analytic in 0, and if such a choice is possible at all or not. If such polyno-
mials exist we say that they provide convergence in the PTA problem for
the domain 0.

This problem has different solutions depending on whether the domain
0 is regular (with respect to the Dirichlet problem) or not. For the regular
case we give several conditions (see Conditions (1)�(5) in Theorem 1) on
a sequence of polynomials [Qn] each equivalent to the fact that this
sequence provides convergence in the PTA problem. Corollary 1 and 2 give
a concrete way of constructing such polynomials. In the irregular case the
problem is much more complicated and Conditions (1)�(5) are no longer
equivalent. We have established a hierarchy of these conditions (see
Theorem 2 and Proposition 1 and 2 which we consider as the main con-
tributions in this paper) except for one implication which remains open.
This implication must answer the following important question: if 0 is
irregular does there exist a sequence of polynomials providing convergence
in the PTA problem? We think that such a sequence does not exist for any
irregular domain 0 (see Conjecture 2 below).

In conclusion we note that Conditions (2)�(5) in Theorem 1 and 2 below
are main characteristics usually studied in different problems on polyno-
mial and rational approximation, and the establishment of a hierarchy of
these conditions in the general case is a problem of independent interest.

In this paper we work with PTAs defined by means of interpolation at
z0=�. Assume that the set of zeros of [Qn]�

0 has no limit point in 0. It
then follows from Theorem 1 that the polynomials [Qn] provide con-
vergence in the PTA problem for a regular domain 0 containing infinity if
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the asymptotic zero distribution of [Qn] is given by the equilibrium
measure of the boundary �0 of 0. If instead we use PTAs corresponding
to interpolation at any chosen point z0 in the complex plane the polyno-
mials [Qn] provide convergence in the PTA problem for a regular domain
0 containing z0 if the asymptotic zero distribution of [Qn] is given by the
harmonic measure of �0 evaluated at z0 (see [4]).

This paper is the fourth in a series of papers (see [1]�[3]) on PTAs by
the authors.

2. DEFINITIONS AND NOTATION

We use the following notation:

C� : The extended complex plane, C� =C _ [�].

0: A domain (open, connected set) in C� containing infinity, � # 0.

�0: The boundary of 0.

K: The complement of 0, K=C� "0. We always assume that K has
positive logarithmic capacity, cap(K)>0.

qu.e.: Quasi everywhere, i.e., everywhere except on a set of logarithmic
capacity zero.

f: A function analytic in 0.

g0(z): The Green function of 0 with pole at infinity.

Qn(z): A monic polynomial of degree n.

+n : The zero counting measure of Qn ; +n puts mass 1�n at each zero
of Qn counting multiplicity.

+: A positive finite measure with compact support S(+) # K.

U(+, z): The logarithmic potential of +, U(+, z)=� log(1�|z&t| ) d+(t).

+n � +: Weak star convergence of measures: � . d+n � � . d+ for
arbitrary continuous functions . in C� .

+K : The equilibrium measure of K.

Definition 1. Let Q(z) be any polynomial, not identically zero, and
denote by P(z) the polynomial part of the Laurent expansion of Q(z) f (z)
at infinity. Then the rational function ?(z)=P(z)�Q(z) is called the Pade�
type approximant (PTA) of f (at infinity) with preassigned denominator
Q(z) (or PTA with preassigned poles at the zeros of Q(z)).

The definition means that

Q(z) f (z)&P(z)=O(z&1), as z � �.
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Evidently, ?(z) does not depend on the normalization of Q(z). We
always assume that Q(z) is a monic polynomial, i.e. the leading coefficient
of Q is 1.

Let Pn �Qn be the PTA of f with preassigned denominator Qn . For the
error of approximation Cauchy's integral theorem and integral formula
give (see for instance [6]):

Rn(z) :=f (z)&
Pn(z)
Qn(z)

=
&1
2?i |#

Qn(t)
Qn(z)

f (t)
t&z

dt, (1)

for all points z outside #, where #/0 is a simple closed positively oriented
curve, or a finite union of such curves, winding once around each point
of K.

Definition 2. We say that the sequence of polynomials [Qn]�
0 provides

convergence in the PTA problem for a domain 0 if for an arbitrary func-
tion f analytic in 0 the corresponding PTAs converge to f uniformly on
bounded closed subsets of 0.

Since the polynomials [Qn] are going to serve as denominators of
rational approximants to analytic functions in 0, the following condition of
nonvanishing of Qn in 0 is natural.

Definition 3. We say that the sequence [Qn]�
0 has asymptotically no

zeros in 0 if the set of zeros of the polynomials in the sequence has no limit
point in 0.

Definition 4. Let 0 and K be defined as above and let + be a measure
with support on K. The measure +$ is the sweeping out (balayage) of + onto
�0 if S(+$)/�0, +$(K)=+(K), and

U(+, z)=U(+$, z) for all z # 0. (2)

We note that according to the classical definition of sweeping out we
should require in (2) equality quasi everywhere on 0� =0 _ �0 which, due
to continuity of potentials, implies that (2) holds everywhere in 0.
However, the assumption that (2) holds everywhere in 0 implies that (2)
holds also everywhere on �0 and that the sweeping out of + onto �0 is
unique (see [9], Chap. II, Theorem 4.7).

Definition 5. We say that the zeros of [Qn]�
0 have regular asymptotic

distribution on K if every weak limit of the set of unit measures [+n]�
1 is

supported by K and its sweeping out onto �0=�K coincides with the equi-
librium measure +K . The stronger property, when +n � +K , we refer to as
equilibrium asymptotic distribution.
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Definition 6. Let Qn be the nth monic orthogonal polynomial with
respect to +. The measure + is regular if for the polynomials [Qn] the limit
relation (3) in Theorem 1 below holds locally uniformly outside the convex
hull of the support S(+), where 0 is the unbounded component of the
complement of S(+) and K=C� "0.

3. RESULTS

We start with the case of regular domains.

Theorem 1. If 0 is a regular domain in C� containing infinity, and
[Qn(z)=zn+ } } } ]�

n=0 is a sequence of polynomials having asymptotically no
zeros in 0, the following conditions are pairwise equivalent:

(1) [Qn]�
0 provides convergence in the PTA problem for 0.

(2) limn � � maxz # K |Qn(z)| 1�n=cap(K), where K=C� "0.

(3) limn � � |Qn(z)| 1�n = cap(K) e g0 (z), uniformly on bounded closed
subsets of 0.

(4) The zeros of [Qn] have regular asymptotic distribution.

(5) For an arbitrary bounded closed set F/0 there exists an open
neighbourhood O of K such that

lim
n � � \sup {}Qn(t)

Qn(z) } , t # O, z # F=+=0.

Many of these implications are more or less well-known. Condition (1)
follows from Condition (5) and the error formula (1). For the equivalence
(2) � (3), see [12], Section 7.4 or [8], Theorem 2.5, and for the implica-
tion (3) O (1), see [12], Section 8.4, IIIb.

In the general case, when 0 is not necessarily regular, the equivalence
problem of the Conditions (1)�(5) is much more complicated and not com-
pletely solved. The conditions are no longer equivalent but we have the
following result.

Theorem 2. Let 0 be any domain in C� containing infinity, with K=
C� "0 and cap(K)>0, and let [Qn(z)=zn+ } } } ]�

0 be a sequence of polyno-
mials having asymptotically no zeros in 0. Then the following implications
hold between Conditions (1)�(5) of Theorem 1:

(5) O (1) O (2) O (3) � (4).
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Concerning Conditions (5) and (1) we make the following conjecture.

Conjecture 1. Under the hypothesis of Theorem 2 we have (1) O (5).

Below we prove (Section 5.4) that this conjecture is equivalent to the
following more important problem.

Conjecture 2. For the existence of polynomials [Qn]�
0 providing con-

vergence in the PTA problem for a domain 0 defined in Theorem 2, it is
necessary and sufficient that 0 is regular.

The existence of polynomials providing convergence in the case of
regular domains 0 follows from Theorem 1 since the Fekete polynomials
for K satisfy Condition (2). The substantial part of Conjecture 2 is that
there does not exist polynomials providing convergence for irregular
domains. Below we prove (see Section 5.5) the validity of this assertion for
the case when K=C� "0 has an isolated point and the polynomials Qn have
no zeros in 0. We note that even in this case the proof we have is quite
complicated. To have a convenient reference we formulate the result in the
following proposition.

Proposition 1. If 0 is a domain containing infinity and such that
K=C� "0, cap(K)>0, has an isolated point, then there is no sequence of
polynomials [Qn]�

0 non-vanishing in 0 and providing convergence in the
PTA problem for 0.

In contrast to Theorem 1, in Theorem 2 we do not claim that we have
the following three implications: (5) o (1), (1) o (2), and (2) o (3). We
have discussed the first of these implications in Conjecture 1. We discuss
the other two in our next proposition which we prove in Section 5.3.

Proposition 2. The implication (2) o (3) is true if and only if 0 is
regular. The implication (1) o (2) is not true in general for irregular
domains 0.

We do not know if the implication (1) o (2) is false for all irregular
domains.

To summarize the above discussion we see that the property of providing
convergence in the PTA problem for a domain 0, puts quite strong restric-
tions on a sequence [Qn]�

0 and on 0 as well. In particular, this condition
is stronger than Conditions (2), (3) and (4) of Theorem 1, which are the
most common criteria for regular behaviour of polynomials, and it may be
equivalent (Conjecture 1) to Condition (5).
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As for the practical choice of polynomials providing convergence in the
case of regular 0 we may use different types of extremal polynomials. We
state below (Corollary 1 and 2) that orthogonal polynomials generated by
some regular measure provide convergence. We prove this in Section 5.6.

Let + be a regular measure with compact support S(+) such that the
unbounded component of the complement of S(+) coincides with 0. This
means that �0/S(+)/K. First we formulate the result when K is a
convex set.

Corollary 1. Let 0 be a domain containing infinity and K=C� "0 a
convex set. Then the monic orthogonal polynomials generated by a regular
measure + satisfying �0 / S(+) / K, provide convergence in the PTA
problem for the domain 0.

As concerns general regular domains 0, they may contain zeros of the
orthogonal polynomials. However, it is always possible to omit some of the
zeros of the orthogonal polynomials to get new polynomials with
asymptotically no zeros in 0. In particular, we have the following more
general version of Corollary 1.

Corollary 2. Let 0 be a regular domain and + a regular measure
satisfying �0/S(+)/K. Let V denote an open bounded set, V� /0, where
V� is the closure of V. Denote by zn1 , zn2 , ..., znm , m=m(n), the zeros
belonging to V� of the corresponding monic orthogonal polynomials Qn

generated by +. Then, for an arbitrary analytic function f in 0, the PTAs
with preassigned denominators Q� n(z) :=Qn(z)�(z&zn1) } } } (z&znm) converge
to f uniformly on compact subsets of V.

Remark 1. It is a beautiful fact (see [13] or [10]) that although m(n),
the number of zeros of Qn in V� , depends on n, it is bounded in n.

Finally, in Section 5.7 we prove the following proposition.

Proposition 3. In general, in Corollary 2 we cannot omit the assump-
tions that the set 0 and the measure + are regular.

4. PRELIMINARY FACTS

Lower Envelope Theorem (see [7], Theorem 3.8 or [9], Appendix). Let
+ and [+n]�

1 be measures with support in a compact set K of C. If +n � +
and zn � z0 then

U(+, z0)=lim inf
n � �

U(+n , zn)

for quasi every z0 # C.
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In addition, if an open set V has no intersection with the compact set K
then U(+n , z) � U(+, z) uniformly on compact subsets of V.

Principle of Domination ([7], Theorem 1.27 or [9], Appendix). Suppose
that + and & are probability measures and & is of finite logarithmic energy.
If U(+, z)�U(&, z) holds &-almost everywhere, then it holds everywhere.

C-Absolute Continuity of Equilibrium Measure ([7], Section II.1).
+K (E)=0 for any set E such that cap(E)=0.

The fine topology on C is the weakest topology on C for which all super-
harmonic functions (in particular potentials) are continuous. If O is a con-
nected open set then the boundary of O in the fine and Euclidean
topologies coincide (see for instance [10], Appendix).

5. PROOFS

Without loss of generality in all proofs below we assume that cap(K)=1.

5.1. Proof of Theorem 2. We start by proving the implication (1) O (2)
which is the central part of Theorem 2. Let the polynomials [Qn(z)=
zn+ } } } ]�

n=0 provide convergence and introduce

Mn=max
K

|Qn(z)|. (3)

We have to prove that

lim
n � �

M 1�n
n =cap(K)=1. (4)

We know that lim infn � � M 1�n
n �1, since we have the limit 1 for the

Chebyshev polynomials which minimize Mn . Suppose on the contrary that
we do not have (4), and denote by zn the point where |Qn(z)| attains its
maximum on K. Then without loss of generality we may assume that

lim
n � �

|Qn(zn)| 1�n>:>1 (5)

(otherwise we may take a subsequence). Consider the following function

f (z)= :
�

m=1

am

z&zm
,

where am is 1�m2, &1�m2 or 0 according to the specification below.
Obviously, this sum converges uniformly on compact subsets of 0 and
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consequently defines an analytic function in 0. By applying the error for-
mula (1) to this function we obtain

Rn(z)=
&1
2?i |

#

Qn(t)
Qn(z)

} :
�

m=1

am

t&zm

dt
t&z

,

for all z outside #, where #/0 is a simple closed curve, or a finite union
of such curves, winding once around K. By integrating termwise and
applying Cauchy's integral formula we obtain, since Qn(t)�(t&z) is analytic
in t inside #,

Rn(z)= f (z)&
Pn(z)
Qn(z)

=& :
�

m=1

am } Qn(zm)
Qn(z) } (zm&z)

(6)

outside # and, due to the arbitrariness in the choice of #, everywhere in 0.
Now, by using (6) and the fast growth of Qn(zn) (see (5)) we shall try

to get divergence of Rn(z) at some point z # 0 where Qn(z) does not grow
so fast, as n tends to infinity.

First we prove the following lemma.

Lemma 1. For an arbitrary ;>1 there exists a point z$ # 0 such that

lim inf
n � �

|Qn(z$)| 1�n<;. (7)

Proof of Lemma 1. Suppose on the contrary that

lim inf
n � �

|Qn(z)| 1�n�; (8)

for all z # 0. We may suppose also that the corresponding zero counting
unit measures +n of Qn have a weak star limit _ supported by K. Then, for
the corresponding potentials we get, since Qn have asymptotically no zeros
in 0,

U(_, z)=lim inf
n � �

U(+n , z)=&lim inf
n � �

log |Qn(z)| 1�n�&log ;<0

for all z # 0. Due to the properties of the fine topology described in
Section 4, we get that

U(_, z)�&log ;<0

everywhere on �0.

246 AMBROLADZE AND WALLIN



File: 640J 304010 . By:DS . Date:21:04:97 . Time:08:23 LOP8M. V8.0. Page 01:01
Codes: 2509 Signs: 1510 . Length: 45 pic 0 pts, 190 mm

Denote by _$ the sweeping out measure of _ onto �0. Then, due to the
equality of the corresponding potentials on �0 (see Section 2), we also
have

U(_$, z)�&log ;<0

everywhere on �0, and, in addition, S(_$)/�0. But this inequality con-
tradicts the extremal property of the equilibrium measure +K of the
compact set K, which says that

0=&log cap(K)= sup
S(+K)

U(+K , t)=min sup
S(&)

U(&, z),

where the minimum is taken over all probability measures & supported by
K (see [7], Theorem 2.3 (ii)). Lemma 1 is proved.

Now we fix a point z$ # 0 satisfying (7) with ;<:, and give the rule for
the choice of the coefficients am , m=1, 2, 3, ... . As we have said above, we
always take am to be \1�m2 or 0. First we define an increasing sub-
sequence of indices mi , i=1, 2, ..., for which ami {0. By using (5) and (7)
we choose m1 as the smallest integer for which

|Qm1
(zm1

)| 1�m1>: and |Qm1
(z$)| 1�m1<;.

After having defined mi we choose mi+1 by the following conditions

|Qmi+1
(zmi+1

)| 1�mi+1>:, (9)

|Qmi+1
(z$)| 1�mi+1<;, (10)

:
�

m=mi+1

|Qmi (zm)|
m2 <1. (11)

In this way we define an infinite sequence mi , i=1, 2, ... . For all indices m
not belonging to this subsequence we put am=0. Now we define the
numbers ami . We have already defined them up to the sign: |ami |=1�m2

i .
Having defined signs of am1

, am2
, ..., ami&1

we define the sign of ami from the
following condition

}ami } Qmi (zmi)
zmi&z$ }� } :

mi

m=1

amQmi (zm)
zm&z$ } . (12)

At least for one choice of the sign of ami we have this inequality; here we
use the fact that max[ |a+b|, |a&b|]�|b|.
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Now we have defined all the coefficients am , m=1, 2, ..., and we have to
check the divergence of Rn(z$). We obtain

|Rmi (z$)|= } 1
Qmi (z$)

} :
�

m=1

amQmi (zm)
zm&z$ }

�
1

|Qmi (z$)|
} \} :

mi

m=1

amQmi (zm)
zm&z$ }& } :

m>mi

amQmi (zm)
zm&z$ }+ .

We get by (11), if d=dist(z$, K),

} :
m>mi

amQmi (zm)
zm&z$ }�1

d
} :

�

m=mi+1
}Qmi (zm)

m2 }�1
d

. (13)

From (12) and (9) we get, if D=max[dist(z$, z), z # K],

} :
mi

m=1

amQmi (zm)
zm&z$ }� }ami Qmi (zmi)

zmi&z$ }� :mi

m2
i } D

. (14)

Finally, (13), (10) and (14) give

|Rmi (z$)|�
1

;mi \ :mi

m2
i } D

&
1
d+ ,

and, taking into account that :>;>1, we obtain

lim
i � �

|Rmi (z$)|=�.

The implication (1) O (2) is proved.

Proof of (2) O (4) in Theorem 2. From Condition (2), with the assump-
tion cap K=1, follows that we may choose a sequence of positive numbers
=n � 0 such that

U(+n , z)=
&1

n
log |Qn(z)|> &=n , (15)

for all z # K. Let us choose a weakly convergent subsequence of the zero
counting measures [+n], +ni � +. Then S(+)/K. By using the Lower
envelope theorem (Section 4) and (15) we obtain that U(+, z)�0 qu.e. on
K. For the equilibrium measure +K we know that U(+K , z)=0 qu.e. on K.
Hence, we get

U(+, z)�U(+k , z) (16)
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qu.e. on K. If E is the exceptional set in (16), then +K (E)=0 since
cap E=0 (Section 4). This means that (16) holds +K-almost everywhere as
well. Hence, the Principle of domination (Section 4) yields that

U(+, z)�U(+K , z) everywhere in C. (17)

Suppose that for some point z0 # 0 we have strict inequality in (17),

U(+, z0)>U(+K , z0). (18)

Let #/0 be a simple closed curve passing through z0 such that K is inside
#. Denote by +# the equilibrium measure of #. Then U(+# , z)#c# on and
inside #, where c# is some constant. By using Fubini's theorem we get

| U(+, z) d+#=| U(+# , z) d+=c#=| U(+# , z) d+K=| U(+K , z) d+# .

Consequently,

| U(+, z) d+#=| U(+K , z) d+# . (19)

However, by (17) and (18), and the continuity of the potentials U(+, z) and
U(+K , z) on #, we should have strict inequality instead of equality in (19).
This contradiction shows that U(+, z)#U(+K , z) in 0 and, by definition,
+K is the sweeping out of + onto �0.

Proof of (3) O (4) in Theorem 2. Let + be a weak star limit of a sub-
sequence +ni of the zero counting measures of Qn , +ni � +. Then, due to
Condition 3 we have, since Qni have asymptotically no zeros in 0,

U(+, z)= lim
i � �

U(+ni , z)=& lim
i � �

log |Qni (z)| 1�ni=&g0(z)=U(+K , z),

for all z # 0. By definition this means that the sweeping out of + is +K .

Proof of (4) O (3) in Theorem 2. Suppose that (4) holds but not (3).
Then we easily get a contradiction by using the fact that from any sub-
sequence of [+n] we may extract another subsequence which has a weak
star limit.

Proof of (5) O (1) in Theorem 2. This implication immediately follows
from the error formula (1) if we choose # in O. Theorem 2 is proved.

5.2. Proof of Theorem 1. After having proved Theorem 2 it remains to
prove that (3) O (5) for regular domains 0. However, this implication
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follows if we use that for regular domains 0 the Green function is con-
tinuous on 0� , identically zero on �0 and strictly positive in 0. Theorem
1 is proved.

5.3. Proof of Proposition 2.
5.3.1. We start with the proof that if 0 is any irregular domain then

Condition (3) does not imply Condition (2).
Condition (3) is equivalent to Condition (4). Consequently, what we

have to do is to construct a sequence of monic polynomials [Qn] whose
zeros have regular asymptotic distribution (in our case below we even have
equilibrium asymptotic distribution), but

lim sup
n � �

(max
z # K

|Qn(z)| 1�n)>cap(K)=1.

Let z0 be an irregular point of K. Then g0(z0)>:>0. We claim that there
exists a sequence of disks [Om]�

1 centered at z0 , so that their radii tend to
zero and the boundaries �Om do not contain points of K. This follows from
Wiener's criterion for irregular points ([7], Chapter V) combined with an
argument on a projection on a half-line from the irregular point and an
application of the transfinite diameter. We omit the details.

Introduce Km=K"Om and let gm be the Green function of 0m :=C� "Km .
Since 0m #0 we have gm(z)� g0(z) for all z # 0. In particular, this
inequality holds on �Om for arbitrary m. Since gm is harmonic and g0 sub-
harmonic in Om we get the same inequality at z0 as well,

gm(z0)� g0(z0)>:>0, m=1, 2, ... . (20)

Fix m and denote by [P (m)
n ]�

n=1 a sequence of monic polynomials with zeros
on Km having equilibrium asymptotic distribution. Then, by (3) � (4) in
Theorem 2, we obtain

lim
n � �

|P (m)
n (z0)| 1�n=cap(Km) } e gm(z0). (21)

From (20) and the fact that cap(Km) � cap(K)=1 we get, for sufficiently
large m,

cap(Km) e gm(z0)>q } cap(K)=q, (22)

for some fixed q>1. We may assume that this inequality holds for all m.
Now, by (21) and (22), for any fixed m and sufficiently large n, n>N(m),
we obtain

|P (m)
n (z0)|1�n>q } cap(K). (23)
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We extract a ``diagonal'' sequence n(m) such that n(m)>N(m) and
n(m+1)>n(m), and consider the sequence of polynomials P (m)

n(m) , m=
1, 2, . . . with zero distributions +n(m) . We may also guarantee that the zeros
of these polynomials have equilibrium asymptotic distribution. In fact, first,
fixing any closed disk F/0, we can guarantee that U(+n(m) , z) � U(+K , z)
uniformly on F. Then, for any weak star limit + of the set of measures
[+n(m)], we will have U(+, z)=U(+K , z) on F and, due to the uniqueness
theorem for harmonic functions, everywhere in 0 as well. In addition,
evidently S(+) # �0, and so +=+K . We conclude that +n(m) � +K . Conse-
quently, for the polynomials P (m)

n(m) we have Condition (4) but, according
to (23) we do not have Condition 2. Polynomials for missing indices
can be chosen arbitrarily with zeros on �0 having equilibrium asymptotic
distribution.

5.3.2. Now we prove that for irregular domains 0 Condition (2) does
not, in general, guarantee Condition (1).

Let [Tn(z)=zn+ } } } ]�
0 be the Chebyshev polynomials for 2=[&2, 2].

It is well-known that

max
z # 2

|Tn(z)| 1�n � cap(2)=1, as n � �.

Consider the compact set K=2 _ [3], and 0=C� "K. Put
Qn(z)=Tn&1(z) } (z&3), n=1, 2, ... . Evidently

lim
n � �

max
z # K

|Qn(z)| 1�n � cap(K)=1,

i.e., the polynomials [Qn] satisfy Condition (2) for the compact set K. Let
us check that Condition (1) is not satisfied. Consider f (z)=1�(z&3)2. If
the corresponding PTAs Pn(z)�Qn(z) approximate f (z) uniformly in 0, as
n � �, the rational functions Pn(z) } (z&3)�Qn(z), which are analytic in
0 _ [3], approach the function 1�(z&3). But this is impossible which we
see by expressing, for example, the residue of the function 1�(z&3) at the
point z=3 by the integral on the circle |z&3|=1�2.

5.4. Now we prove that Conjecture 1 is equivalent to Conjecture 2.
If Conjecture 2 is true and we have Condition (1), this means that 0 is

regular and by Theorem 1 we have Condition (5) as well.
The other direction is more complicated. Suppose that Conjecture 1 is

true. The fact that for arbitrary regular 0 there exist polynomials satisfying
Condition (1) is trivial; take for example Fekete polynomials, or see
Corollary 2 above. What we need to prove is that if 0 is irregular then no
sequence of polynomials satisfies Condition (1). Suppose on the contrary
that 0 is irregular and that the polynomials [Qn] satisfy Condition (1).
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Then, due to the assumption that Conjecture 1 is true, they also satisfy
Condition (5), and, by Theorem 2, all the other conditions (2)�(4). Now
we prove that for irregular domains Condition (5) never holds.

Let z0 # �0 be an irregular point of K. Then, by the definition of
irregular points, e g0(z0)>q>1. Due to properties of the fine topology
described in Section 4, there exists a point z1 # 0 arbitrarily close to z0

satisfying the same inequality

e g0(z1)>q>1. (24)

Using again the same argument about the fine topology, but starting with
some regular point |0 # �0, we find another point |1 # 0 satisfying

e g0(|1)<q. (25)

From Condition (3), (24), and (25) we get, for all sufficiently large n,

|Qn(z1)| 1�n>q>|Qn(|1)| 1�n.

It follows that Condition (5) cannot hold if F contains |1 and O contains
z1 ; note again that z1 can be chosen arbitrarily close to �0, and conse-
quently an arbitrary open set O, K/O, contains a point with the property
(24).

5.5. Proof of Proposition 1. Without loss of generality we assume that
the point z=0 is an isolated point of K, and, as usual, we assume that
cap(K)=1. Let [Qn(z)]�

1 be a sequence of polynomials satisfying Condi-
tion (1) and, consequently, Conditions (2)�(4) as well, such that all the
zeros of the polynomials Qn(z) are supported by K. Denote by m=m(n)
the number of zeros of Qn(z) at z=0, that is Qn(z)=Q� n&m(z) } zm, where
Q� n&m(0){0. Note that

m(n)�n � 0 as n � �, (26)

since otherwise the set [+n] of zero counting measures of [Qn(z)] would
have a weak star limit +0 with a mass point z=0. But we know that if
[Qn(z)] provides convergence, the sweeping out of +0 must be the equi-
librium measure of K, and, consequently, +0 cannot have a mass point on
the outer boundary of K.

Let us denote by +~ n the mass obtained from +n by omitting the mass at
the point z=0. Because of (26) the set [+~ n] has the same weak star limits
as the set [+n]. From this it follows that we have

lim
n � �

|Q� n&m(z)| 1�n=e g0(z),
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locally uniformly in the domain 0 _ [0]. In particular,

lim
n � �

|Q� n&m(0)| 1�n=e g0(0),

where e g0(0)=q>1 because of the irregularity of the point z=0.
From the last limit relation we get

|Q� n&m(0)| 1�n>q&=, (27)

for an arbitrary =>0 and sufficiently large n.
We introduce M=supn # N m(n) and consider two cases, M<� and

M=�. In the first case the polynomials [Qn(z)] can not provide con-
vergence for the function f (z)=1�zM+1 because, due to the argument prin-
ciple, the rational functions Pn(z)�Qn(z) must have at least M+1 poles
close to the point z=0, but they have at most M poles.

Consider now the case M=�. We choose a sequence of increasing
indices [nj]�

1 so that for the corresponding indices [mj]�
1 , mj=m(nj), we

also have m1<m2< } } } . We introduce the function

f (z)= :
�

i=1

ami

zmi+1 ,

where we shall specify the signs of ami later and

|ami |=|1&=| ni, 0<=<1. (28)

We have, due to (26),

|ami |
1�mi=|1&=| ni�mi � 0,

and, consequently, f (z) is a holomorphic function everywhere in C� "[0].
Consider the nonpolynomial part of Qnj (z) f (z):

O(z&1)=Qnj (z) f (z)&Pnj (z)

=Q� nj&mj (z) } zmj \ :
�

i=1

ami

zmi+1+&Pnj (z)

=Q� nj&mj (z) } zmj \
amj

zmj+1+ :
i{ j

ami

zmi+1+&Pnj (z)

=
amj } Q� nj&mj (z)

z
+Q� nj&mj (z) } zmj \ :

i{ j

ami

zmi+1+&Pnj (z).
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Note that

Q� nj&mj (z)

z
=Tj (z)+

Q� nj&mj (0)

z
,

where Tj (z) is some polynomial. This means that we can write

Qnj (z) f (z)&Pnj (z)=
amj } Q� nj&mj (0)

z
+hj (z),

where hj (z) is the singular part of the Laurent expansion of Qnj (z) f (z)
which does not depend on amj . Now, fix a point z1 # 0 and choose
amj=|1&=|nj or amj=&|1&=| nj to guarantee that

}
amj } Q� nj&mj (0)

z1

+hj (z1) }� }
amj } Q� nj&mj (0)

z1 } .
By using (27) and (28) we get from the last inequality

|Qnj (z1) f (z1)&Pnj (z1)|�
|1&=|nj q&=|nj

|z1 |
�

(q&(1+q)=)nj

|z1 |
. (29)

Now assume that the point z1 # 0 is sufficiently close to some regular point
of K. Then, due to the continuity of the Green function at regular points
we have e g0(z1)<1+=. From the following property

lim
n � �

|Qn(z)| 1�n=e g0(z) in 0

we obtain

|Qn(z1)|<|1+=|n (30)

for all sufficiently large n. From (29) and (30) we get

}
Qnj (z1) f (z1)&Pnj (z1)

Qnj (z1) }�(q&(1+q)=)nj

|z1 | } |1+=|nj
.

If we choose = small enough, the right-hand side of the last inequality tends
to infinity with nj .

Proposition 1 is proved.

5.6. Proof of Corollary 2. Let #n be positive numbers such that #nQn

has L2
+-norm 1. Since + is a regular measure satisfying �0/S(+)/K and

cap(K)=1 we get ([10], Theorem 3.1.1, (i))

lim
n � �

#1�n
n =1.
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If we combine this with Corollary 1.1.5 in [10] and Remark 1 in this paper
we obtain

lim inf
n � �

|Q� n(z)| 1�m(n)�e g0(z)

uniformly on any given compact subset F of V. By using Theorem 3.2.1,
(iii) in [10] and Remark 1 we get an inequality in the other direction:

lim sup
n � �

|Q� n(t)| 1�m(n)�e g0(t)

uniformly on a contour # # 0 surrounding K. The desired result now
follows from the error formula (1).

5.7. Proof of Proposition 3. If K=C� "0 is convex, Theorem 1, (1) O (3)
shows that we cannot omit the condition that + is regular.

Now we show that for irregular domains 0 we do not necessarily have
the convergence result in Corollary 2 even if the measure + is regular.
We take K=[&2, &1] _ [1, 2] _ [0], and the measure +, S(+)=K, such
that the restriction of + to K"[0] is the linear Lebesgue measure; the
regularity of + easily follows from the Erdo� s�Turan Criterion (see [10],
Corollary 4.1.2). In addition, + is a symmetric measure and, consequently,
all the zeros of the orthogonal polynomials Qn lie on K"[0], except for
one zero, in case of odd n, lying at z=0. By taking f (z)=1�z2 and using
arguments analogous to those used in the proof that Condition (2) does
not imply Condition (1), we obtain that the corresponding PTAs do not
converge to f in C"K. Proposition 3 is proved.
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